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Abstract. In this paper we have considered the restricted three body
problem (R3BP) in which the more massive primary is triaxial, the less
massive primary and infinitesimal body are oblate spheroids, and are
encompassed by a belt of homogenous material points. Analytically and
numerically, we have studied the effects of triaxiality of the more mas-
sive primary, oblateness of both the less massive primary and infinitesimal
body and the gravitational potential generated by the belt on the location
of the triangular libration points L4,5 and their linear stability. L4,5 do
not form equilateral triangles with the primaries in the presence of all or
any of the aforementioned perturbations. Due to triaxiality of the more
massive primary and oblateness of the infinitesimal body the triangular
libration points are seen to move away from the line linking the primaries,
whereas they shift closer to the line owing to the oblateness of the less
massive primary and the potential from the belt. The range 0 < μ < μc
of stability of the triangular points is reduced in the presence of any of
the perturbations, except when considering the potential from the belt the
range increases, where μc is the critical mass ratio. The oblateness of
a test particle (of infinitesimal mass) shifts the location of its libration
positions away from the primaries and reduces its range of stability.

Key words. Restricted three-body problem (R3BP)—potential from the
belt—triaxiality effect—oblateness effect.

1. Introduction

The general problem of obtaining a closed form solution for the motion of N > 2
bodies in space under their mutual gravitational interaction has remained intractable.
This is rather famously known as the N-body problem. More precisely, the three-
body problem (N = 3) has been explored extensively for more than three centuries.
Unlike the case with two bodies, the three-body problem has no simple general
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solution that can be utilized to describe the motion for any arbitrary initial conditions
at all time (Szebehely 1967; Szebehely & Mark 2004). As recognized by Leonhard
Euler (1772), the assumption that one body is of infinitesimal mass, and there-
fore does not influence the motion of the remaining two primary bodies, yields
a more manageable and useful problem, called the restricted three-body problem
(R3BP) (Szebehely 1967; Bruno 1994; Gutzwiller 1998; Valtonen & Karttunen
2006; Chenciner 2007). Three-body problem also exist in the General Relativity
(Renzetti 2012a; Iorio 2014). In circular (C) R3BP, the primary bodies are fixed in
a coordinate system rotating with the origin (axis of rotation) at the centre of their
masses. Lagrange showed that in this rotating (synodic) frame there are five libra-
tion points at which the infinitesimal mass would remain fixed if there exists zero
velocity. Three of the points L1, L2, L3 are collinear with the primaries while, the
other two L4, L5 are in equilateral triangular configurations with the primaries. The
collinear points L1, L2, L3 are linearly unstable, while the triangular points L4, L5
are linearly stable for the mass ratio of the primaries less than the Routhian value
0.03852. . . , (Szebehely 1967).

In the classical R3BP the sphericity of the bodies is presumed, whereas in reality
numerous celestial bodies are either oblate or triaxial in shape. For instance, Jupiter
and Saturn are oblate while Pluto and its moon Charon are triaxial. The aspheri-
city of either the Sun or the major bodies are seen to play a role in several orbital
problems at classical and relativistic level (Rozelot & Damiani 2011; Damiani
et al. 2011; Iorio 2006, 2009, 2010, 2011, 2013; Smith et al. 2012; Rozelot & Fazel
2013; Yan et al. 2013; Iorio et al. 2011, 2013; Renzetti 2012b, 2013, 2014). An
important example of perturbations arising due to oblateness in the solar system is
the orbit of the satellite of Jupiter, called Amalthea. This planet is very oblate and
the satellite’s orbit is too small that its line of apsides advances about 900◦ in one
year (Moulton 1914). This prompted Khanna & Bhatnagar (1999), Sharma et al.
(2001a, b, c), Jain et al. (2006) and Singh (2013) to involve at least one of the
primaries in their studies of the CR3BP as triaxial rigid bodies. While Ishwar
(1997, 1998), Elshaboury & Mostafa (2011), Singh & Umar (2013), Abouelmagd
et al. (2013) and Singh & Haruna (2014) have considered at least one of the pri-
maries and the infinitesimal body as oblate spheroids in their investigations of the
CR3BP.

There are ring-type belts of dust particles in the stellar systems which are regarded
as the young analogues of the Kuiper belt (Greaves et al. 1998). Trilling et al.
(2007) detected debris rings in many main-sequence stellar binary systems using
the Spitzer Space Telescope. Among the observed 69 A3-F8 main sequence binary
star systems, nearly 60% showed dust rings surrounding the binary stars. This
inspired many scientists to study the CR3BP by taking into consideration the addi-
tional gravitational potential from the belt. Jiang & Yeh (2003, 2004a, b) studied
the CR3BP by considering the influence from a belt for planetary systems and
found that the chance to have libration points around the inner part of the belt is
higher than that near the outer part. Jiang & Yeh (2003) and Yeh & Jiang (2006)
have incorporated additional gravitational potential from the belt in their studies of
the CR3BP. They found that the gravitational potential from the belt makes the struc-
ture of the CR3BP quite different such that new libration points exist only under
certain conditions. The orbital motion of a test particle around a primary is greatly
affected in the presence of a massive belt (Iorio 2007, 2012). Of late, a bi-dimensional
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ring model for the minor asteroids of the solar system has been implemented and
modeled in the latest EPM2013 planetary ephemerides (Pitjeva & Pitjev 2014).
Kushvah (2008) studied analytically and numerically the effects of radiation pressure
of the more massive primary, oblateness of less massive primary and gravitational
potential from the belt on the linear stability of libration points in the R3BP. Singh &
Taura (2013) examined the combined effect of radiation and oblateness of both pri-
maries, together with additional gravitational potential from the belt on the motion
of an infinitesimal body in the CR3BP. Singh & Taura (2014a) studied the effects
of oblateness up to J4 of the less massive primary and gravitational potential from a
belt on the linear stability of triangular equilibrium points in the photogravitational
CR3BP. Singh & Taura (2014b) examined the effect of triaxiality of the more mas-
sive primary, oblateness up to the zonal harmonic J4 of the smaller primary and
gravitational potential from a belt on the linear stability of the triangular libration
points in the CR3B.

In this study, we aim to examine the effect of triaxiality of the more massive
primary, oblateness of both the less massive primary and the infinitesimal body and
the gravitational potential from the belt on the locations of L4,5 and their linear
stability in the CR3BP. This study can be useful in the investigation of motion of
an oblate test particle near triaxial and oblate binaries surrounded by a cluster of
material points.

This paper is arranged as follows Section 2 presents equations of motion of the
infinitesimal body, locations of L4(5) and their linear stability are established in
sections 3 and 4, while section 5 contains conclusion.

2. Equations of motion

Let m3 be the mass of the infinitesimal body moving in the orbital plane of a more
massive triaxial primary of mass m1 and a less massive oblate primary of mass m2.
We take a coordinate system oxyz with origin at the centre of mass of the primaries
and the x-axis is the line joining the primaries; while y-axis is perpendicular to it in
the orbital plane, the z-axis is perpendicular to the orbital plane of the primaries. The
circumbinary belt is centered at the origin of the coordinate system oxyz (Fig. 1).
The distances of m3 from m1, m2 are r1, r2, respectively, and the distance between
the primaries is R. The units for the mass and length are chosen such that the sum
of the masses of the primaries and their separation distance are unity. The unit of
time is chosen such that the gravitational constant is also unity. Let μ = m2

m1+m2
be the mass parameter, then we have the masses m2 = μ and m1 = 1 − μ; let
oxyz rotate about the z-axis, then the coordinates of m1, m2 and m3 are (x1, 0, 0) =
(−μ , 0, 0), (x2, 0, 0) = (1 − μ , 0, 0) and (x, y, 0), respectively.

We assume that the smaller primary and infinitesimal body have their equatorial
planes coinciding with the plane of motion; and let us represent the oblateness coeffi-

cients of the smaller primary and infinitesimal body as Ai, 0 < Ai = R2
ei−R2

pi

5R2 << 1,
where Rei i = 2, 3 are equatorial radii and, Rpi i = 2, 3 are the polar radii of m2
and m3, respectively.

Then, the equations of motion of m3 under the influence of triaxiality of m1,
oblateness of m2, m3 and gravitational potential from a circumbinary belt centred at
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Figure 1. The planar configuration of the problem.

the origin of the coordinate system oxyz (Sharma et al. 2001a, Singh & Taura 2013)
can be expressed as

ẍ − 2nẏ = �x, ÿ + 2nẋ = �y, (1)
where

� = n2

2
[(1−μ)r2

1 +μr2
2 ]+

(
1

r1
+ (2σ1 −σ2)

2r3
1

− 3(σ1 −σ2)y
2

2r5
1

+ A3

2r3
1

)
(1−μ)

+
(

1

r2
+ A2

2r3
2

+ A3

2r3
2

)
μ + Mb

(r2 + T 2)1/2
, (2)

r2
1 = (x + μ)2 + y2, r2

2 = (x + μ − 1)2 + y2, (3)

σ1 = a′2 − c′2

5R2
, σ2 = b′2 − c′2

5R2
,

The over dot denotes differentiation with respect to time t, σ1, σ2 << 1 characterize
the triaxiality of the more massive primary with a′, b′, c′ as lengths of its semi-axes,
Mb << 1 is the total mass of the belt, r is the radial distance of the infinitesimal
mass given by r2 = x2 + y2, T = a + b, a and b are parameters which determine
the density profile of the belt ( Miyamoto & Nagai 1975, Jiang & Yeh 2004b, Yeh
& Jiang 2006; Kushvah 2008). The parameter a known as the flatness parameter
controls the flatness of the profile. The parameter b controls the size of the core of
density profile and is called the core parameter. When a = b = 0, the potential is
equal to one by a point mass. n is the mean motion of the primaries, given by

n2 = 1 + 3

2
(2σ1 − σ2 + A2) + 2Mbrc

(r2
c + T 2)3/2

, (4)

where r2
c = 1 − μ + μ2 is the radial distance of the infinitesimal body through the

triangular points in the classical R3BP.
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3. Location of triangular libration points

The libration points represent stationary solutions of the CR3BP. All the derivatives
of coordinates with respect to time are zero at these points (Szebehely 1967). Thus
the libration points of the perturbed CR3BP if they exist, are determined by setting
all velocities and accelerations of the equations of motion (1) to zero, i.e.

�x = n2x − (1 − μ) (x + μ)

r3
1

− 3(1 − μ) (x + μ) (2σ1 − σ2)

2r5
1

+15(1−μ) (x+μ) (σ1−σ2)y
2
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1
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− 3μ (x+μ−1) A2

2r5
2
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2

− 3μ (x + μ − 1) A3
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2

− Mbx

(r2 + T 2)3/2
= 0,
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r3
1
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3

2r7
1

−3(1 − μ)yA3

2r5
1

− μy

r3
2

− 3μyA2

2r5
2

− 3μyA3

2r5
2

− Mby

(r2 + T 2)3/2
= 0.

Now, from �x = 0, �y = 0 with y �= 0, we have
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

If the effect of triaxiality of the more massive primary, oblateness of the less massive
primary and the infinitesimal mass and the potential from the belt are neglected, i.e.,
σ1 = σ2 = A2 = A3 = Mb = 0, the equations of (5) reduce to

n2x − (1 − μ) (x + μ)

r3
1

− μ (x + μ − 1)

r3
2

= 0,

n2 − (1 − μ)

r3
1

− μ

r3
2

= 0

⎫⎪⎪⎬
⎪⎪⎭

with the solutions r1 = r2 = 1 (Szebehely 1967). Therefore, due to the perturbations,
the values of r1 and r2 may change slightly, say by ε1 and ε2 so that

r1 = 1 + ε1, r2 = 1 + ε2, where εi << 1 (i = 1, 2). (6)
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By considering only linear terms in ε1 and ε2, using equation (6) in equation (3)
we obtain

x = 1

2
− μ + ε1 − ε2,

y = ±
√

3

2

(
1 + 2

3
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)
.

⎫⎪⎪⎬
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Substituting equations (4), (6) and (7) in equation (5), and considering only linear
terms in small quantities, we have

ε1 = A3
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2
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8
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,
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(8)

Hence, from equations (7) and (8) we obtain the first approximation in terms
of the small parameters, the coordinates of the triangular libration points
L4(x, y) and L5(x, −y) as

x = 1
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(9)

The effects of various parameters on the location of triangular points L4(5) are shown
in Figs 2– 6, when μ = 0.003 and T = 0.01.

The coordinates in equation (11) are functions of σ1, σ2, A2, A3 and Mb. It is sig-
nificant that the y-coordinates of the triangular points depend on the mass parameter
μ, such that at μ = 0 the coordinates in equation (11) do not exist, which is contrary
to those of Szebehely (1967) and Singh & Ishwar (1999), but it is in agreement with
Sharma et al. (2001a) and Singh & Begha (2011). However, when σ1 = σ2 = A2 =
A3 = Mb = 0, the coordinates reduce to x = 1

2 (1 − 2μ) , y = ±
√

3
2 which corre-

spond to the classical case of Szebehely (1967). In the presence of the only triaxiality
of the more massive primary (i.e., A2 = A3 = Mb = 0), these coordinates com-
pletely agree with those of Sharma et al. (2001a) when the more massive primary
is non-luminous. On considering only the triaxiality of the more massive primary
and oblateness of the less massive primary (i.e., A3 = Mb = 0), the coordinates
(7) confirm those of Sharma et al. (2001b) when the less massive primary is oblate
spheroid instead of triaxial, Singh & Begha (2011) in the absence of perturbations
in the Coriolis and centrifugal forces, and Singh (2013) in the absence of radiation
of the primaries, perturbations in the Coriolis and centrifugal forces and when less
massive primary is oblate spheroid instead of triaxial. It is noted in this problem that,
the triangular points no longer form equilateral triangles with the primaries as they
do in the classical case; rather they form scalene triangles (Figs 2, 3, 6) and isosce-
les triangles (Figs 4, 5) with the primaries. The triangular points move away from
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Positions of L4 and L5 in the presence of triaxiality of the more massive primary
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Figure 2. Effects of triaxiality of the more massive primary on the location of L4,5 (A2 =
A3 = Mb = 0).

the line joining the primaries in the presence of the triaxiality of the more massive
primary (Fig. 2) and oblateness of the infinitesimal body (Fig. 4), whereas the points
shift toward the line due to the oblateness of the less massive primary (Fig. 3) and
the potential from the belt (Fig. 5). In the presence of all of these perturbations, the
points move away from the x-axis (Fig. 6).

4. Linear stability of the triangular libration points

Let (x*, y*) be the coordinates of any of the triangular libration points. Let η and ξ

be small displacements in x* and y* respectively, then (x* + η, y* + ξ ) is a point
in the vicinity of (x*, y*). Thus the linear variational equations of motion of the
infinitesimal body are

η̈ − 2nξ̇ = (�0
xx)η + (�0

xy)ξ,

ξ̈ + 2nη̇ = (�0
yx)η + (�0

yy)ξ, (10)

where

�0
xx = ∂2�

∂x2
(x∗, y∗), �0

xy = ∂2�

∂xy
(x∗, y∗),

�0
yx = ∂2�

∂yx
(x∗, y∗), �0

yy = ∂2�

∂y2
(x∗, y∗).
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Figure 3. Effects of oblateness of the less massive primary on the location of L4,5 (δ1 = δ1 =
A3 = Mb = 0).

Let η = Aeλt , ξ = Beλt (A, B, λ are constants) be the solutions of the equations of
(10), then the characteristic equation for the triangular libration point is

λ4 + (4n2 − �0
xx − �0

yy)λ
2 + (�0

xx�
0
yy − �0,2

xy ) = 0. (11)

Now, confining only to the linear terms in A2, A3, σ1, σ2, Mb, using equation (9) we
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Figure 4. Effects of oblateness of the infinitesimal body on the location of L4,5 (δ1 = δ2 =
A2 = Mb = 0).

Utilizing the values of �0
xx, �

0
yy , �0

xy in equation (11) yield


2 + Q
 + N = 0, (12)

where
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The roots of equation (12) are
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[−Q ± √

�], (13)
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Figure 5. Effects of potential from the belt on the location of L4,5 (δ1 = δ2 = A2 = A3 = 0).

where � = Q2 − 4N is called the discriminant, which is given by

� = 1 + 21σ1

2
− 27σ2

2
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Thus, the nature of the roots

λ1,2 = ±√

1, λ3,4 = ±√


2, (15)

depend on the discriminant � which is a quadratic function of the mass parameter
μ. Since 0 < μ < 1

2 we are interested in the behavior of � in the interval (0, 1
2 ).

The domain of � is (−∞, ∞) at μ very close to 0,
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(r2
c + T 2)3/2

− 6Mbr
2
c

(r2
c + T 2)5/2

〉
> 0.

(16)
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Figure 6. The combined effects of the parameters on the location of L4,5.
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The derivative of the discriminant � with respect to the mass parameter μ is

d�

dμ
=

(
27+ 801σ1

4
− 333σ2

4
+117A2+36A3+ 66Mb(2rc−1)

(r2
c + T 2)3/2

+ 27Mb

(r2
c +T 2)5/2

)
2μ

−
(

27+ 891σ1

4
− 447σ2

4
+123A2+36A3+ 66Mb(2rc−1)

(r2
c + T 2)3/2

+ 27Mb

(r2
c +T 2)5/2

)
. (18)

Considering

σ1, σ2, A2, A3, Mb << 1,
d�

dμ
< 0, for all μ ∈

(
0,

1

2

)
. (19)

Since � is a polynomial it is continuous and differentiable in (0, 1
2 ), thus in

equation (18), � is a constantly decreasing function of μ in the interval (0, 1
2 ); and

we conclude with respect to equations (16) and (17) that μ exists in the interval (0, 1
2 )

for which � = 0. The value of μ for which the discriminant vanishes is termed the
critical value of mass parameter represented as μc. Thus, three regions of μ values
can be considered:

(1) When 0 < μ < μc implies � = Q2 − 4N > 0 and � invarially decreasing in
the interval (0, 1

2 ) implies N > 0. Thus Q2 − 4N < Q2 ⇒ √
Q2 − 4N < Q

(since Q > 0 equation (12)) or 
 = 1
2

[
−Q ± √

�
]

< 0 and consequently

the four values of λ in equation (15) are distinct pure imaginary numbers. This
indicates stability of the triangular points.

(2) If μc < μ < 1
2 (� < 0), the real parts of two of the values of λ in

equation (15) are positive. Thus, the triangular points are unstable.
(3) When � = 0(μ = μc), we have double roots of (15) and consequently give

secular terms, showing that the triangular points are unstable.

Solving the equation � = 0, gives the value of the critical mass parameter μc

μc = 1

2

(
1−

√
23

27

)
+ 1

6

(
5

2
− 49

3
√

69

)
σ1− 1

18

(
19

2
− 23√

69

)
σ2+ 1

9

(
1− 13√

69

)
A2

− 22

9
√

69
A3+

[
(76−8rc)

(
r2

c +T 2
)5/2−9(1+6r2

c )
(
r2

c +T 2
)3/2

27
√

69
(
r2

c + T 2
)4

]
Mb. (20)

In Table 1, we have utilized equation (20) to examine the effect of triaxiality of the
bigger primary, oblateness of both the smaller primary and infinitesimal mass; and
the potential from the belt on the critical mass value, by taking arbitrary values for
σ1, σ2, A2, A3 and Mb.

Equation (20) provides the critical mass parameter μc, which is used to establish
the range of stability of the triangular points. It reflects the influence of triaxiality
of the more massive primary, oblateness of both the less massive primary and
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Table 1. The effects of the various perturbations on the critical
mass value, T = 0.01, rc = 0.997.

Case σ1 σ2 A2 A3 Mb μc

1 0 0 0 0 0 0.03852

2 0.0013 0.0011 0 0 0 0.03823
0.0015 0.0012 0 0 0 0.03821
0.0017 0.0014 0 0 0 0.03815

3 0 0 0.02 0 0 0.03727
0 0 0.03 0 0 0.03664
0 0 0.04 0 0 0.03601

4 0 0 0 0.02 0 0.03264
0 0 0 0.03 0 0.02969
0 0 0 0.04 0 0.02675

5 0 0 0 0 0.01 0.03854
0 0 0 0 0.02 0.03897
0 0 0 0 0.03 0.03919

6 0.0013 0.0011 0.02 0.02 0.01 0.03131
0.0015 0.0012 0.03 0.03 0.02 0.02794
0.0017 0.0013 0.04 0.04 0.03 0.02458

infinitesimal body, and gravitational potential from the belt. On ignoring the effect
of these perturbations (i.e., σ1 = σ2 = A2 = A3 = Mb = 0), μc reduces to

1

2

(
1 −

√
23

27

)
= 0.03852 . . . ,

which corresponds to the classical case of Szebehely (1967). If the triaxiality of the
more massive primary, the oblateness of the infinitesimal body and the potential from
the belt are ignored (i.e., σ1 = σ2 = A3 = Mb = 0), the value of μc coincides with
the result of Sharma (1987) when the more massive primary is non radiating. If the
more massive primary is oblate instead of triaxial and in the absence of oblateness
of the infinitesimal body and potential from the belt (i.e., σ1 = σ2, A3 = Mb = 0),
the value of μc reduces to that of Singh & Ishwar (1999) when the primaries are
non-luminous. It can be deduced from Table 1 that the value of μc reduces in the
presence of triaxiality of more massive primary or oblateness of less massive primary
or oblateness of infinitesimal body, while it increases due to the potential from the
belt. The combined effect of these perturbations also reduces the value of μc. Since
the triangular points are linearly stable in the range 0 < μ < μc then, triaxiality
of more massive primary, oblateness of less massive primary and oblateness of the
infinitesimal body reduce the range of stability; whereas the potential from the belt
increases the range of stability.

5. Conclusion

The problem considered in this paper is a perturbation of the R3BP when the
gravitational potential from a belt, and the oblateness and triaxiality of the bodies
are assumed. The positions of triangular libration points and their linear stability
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are affected by the triaxiality of more massive primary, oblateness of less massive
primary, oblateness of infinitesimal body and gravitational potential from a belt. Tri-
angular points no longer form equilateral triangles with the primaries in presence of
all or any of the aforementioned perturbations. Due to triaxiality of the more mas-
sive primary and oblateness of the infinitesimal body the points move away from the
x-axis, while owing to the oblateness of less massive primary and potential from the
belt the points draw closer to the x-axis. The range 0 < μ < μc of stability of the
triangular points is reduced by the triaxiality of more massive primary, oblateness
of less massive primary and oblateness of infinitesimal body. However, the potential
from the belt increases the range. The oblateness of a test particle (of infinitesimal
mass) shifts the location of its equilibrium positions away from the primaries and
limits its range of stability.
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