PROJECT MANAGEMENT (PM) AND ORGANIZATIONAL SUCCESS IN NIGERIA: A STUDY OF DANGOTE CEMENT PLC (DCP), TSE-KUCHA, GBOKO, BENU STATE

S. I. Dugguh and Dugguh, Freeman T.
Federal University, Kashere, Gombe State, Nigeria
Cranfield University, Bedfordshire, United Kingdom

ABSTRACT
The aim of this paper is to analyze the critical success factors of a project in manufacturing organizations using DCP Tse-Kucha as the study area. The research design adopted in this study was simple empirical (field) survey method. Data was collected using questionnaires administered on the management staff of DCP numbering 25 who were subsequently used as the sample size because of the small size of the population. The primary data was complimented by secondary data obtained from the project execution and performance report of DCP. Data analysis was done using Likert 5 point scaling in respect of objective one and both the Pearson Chi-square and Pearson movement correlation test statistic were used in testing the formulated hypotheses. It was observed from data analysis that critical factors like clear project mission, top management support, and project planning/scheduling have tremendous effect on project success in DCP. In fact, the degree of positivity of relationship between both top management support and project planning/scheduling was above 90% meaning that they influence project success in the company greatly. The study recommends that the management of DCP should continually pay serious attention to these critical factors in their subsequent projects in future to ensure that all projects of the company are successfully executed.

Keywords: Project Management, Organizational Success, Project Planning, Cultural Factors, DCP.

INTRODUCTION
One of the most important aspects of managerial activity is the effective management of projects in organizations. In doing so, managers must determine the jobs that have to be done and the order in which they should be done. This again demands planning for what has to be done, the schedule for performance and the resources to be deployed to the total project, (Dugguh, 2005). Project management as a management discipline, underpins much economic activity. In industries, as diverse as manufacturing, projects drive business. Project management, therefore, is emphasized as a process of making decisions and operationalising certain strategies and tactics to bring the project to a success. According to Mobey and Parker (2002), to increase the chances of project success, it is necessary for the organization to have an understanding of the factors that are critical to the success of the project and to systematically and quantitatively assess in terms of their effects in the project completion and then choose appropriate methods of dealing with them. In the private sector, some of the factors that must be identified, assessed and tackled effectively are clear project mission, support from the top management, detail project schedule/plan, effective use of plan, competent project personnel and the available of technical task force among others. On the other hand, if these factors are not taken seriously, it might lead to the failure of the project. Organizations are now operating under high level of uncertainty and projects implementation are open to all sorts of external influence, unexpected events, ever-growing requirements, changing constraints and fluctuating resource flows. According to Ogwu (2001) this clearly shows that if critical factors to a project success are not identified and appropriate steps are not taken to manage them effectively and efficiently, the chance of failure are obvious.

In Nigeria, there are a number of projects that have failed possibly because of ineffective and inefficient management. One of such organizations is Benue Cement Company (BCC) Ltd now Dangote Cement Plc (DCP), Gboko, which also forms the scope of this study. DCP is chosen for the study because, from its inception, the company was owned and managed by the Benue State Government. During this time, failure stories were legion: Production capacity was low, employees were not paid, strikes were the order of the day and subsequently the company was closed down.

Corresponding author: S. I. Dugguh, sdugguh@yahoo.com
When Dangote Group of Companies purchased the company in 2008, there were mixed feelings as to whether the company would be revived. The management installed two new kilns lines were introduced to beef up production capacity. This requires that the new Kiln lines (projects) would be managed effectively to accomplish the set goal of increase production.
The DCP phase 1 expansion project in Tse-Kucha in Ghoko was conceived when the cement company was under the control of the Benue State government but until this present management took over, the progress of the work was very slow. It is therefore, vital to identify the factors that contribute to successful management of projects in manufacturing organizations, especially in DCP, Ghoko, Benue State and to determine the degree of success of those projects.

Objectives of the study
The objective of this study is threefold and is stated as follows:
- To determine the effect of clear mission on project success in DCP Tse-Kucha, Ghoko.
- To find out whether support from the top management is significantly related to project success in DCP Tse-Kucha, Ghoko.
- To ascertain the extent which project planning/scheduling affects project success in DCP Tse-Kucha, Ghoko

Research Hypothesis
H₁: Clear project mission does not significantly impact on organizational success.
H₂: Top management support for projects does not have a significant relationship with organizational success
H₃: Project schedule does not significantly influence organizational success

Conceptual clarification
A project is a temporary endeavour having a defined beginning and end (usually constrained by date, but can be by funding or deliverables), undertaking to meet unique goals and objectives, usually to bring about beneficial change or added value (Mobey & Parker, 2002), and Nokes (2007).
Imaga et al. (2003:140) define a project as a scientifically evolved work plan devised to achieve a specific objective within a specified period of time. Sharing this opinion, Newman et al. (1987:140) and UNIDO (1986:5) also sees it as a cluster of activities that is relatively separated and clear-cut. They further opine that project typically has a distinctive mission and a clear-cut termination point. Examples, are building a new plant construction of roads, designing a new product package, and soliciting gifts of N10m for elderly people's homes.
The temporary nature of projects stands in contrast with business as usual which are repetitive, permanent, or semi-permanent functional activities to produce products or provide services. The primary challenge of project management is to achieve all of the project goals and objectives, while honouring the preconceived constraints. These typical constraints are scope, time and budget (resources).
Project management, according to Chattoed (2007) is the discipline of planning, organizing, securing, managing, leading, and controlling resources to achieve specific goals. It is a set of coordinated activities headed and controlled by a project manager with his team.

Evolution of project management
Lock (2007) states that until 1900, civil engineering projects were generally managed by creative architects, engineers and master builders. It was in the 1950s that organizations started to systematically apply PM tools and techniques to complex engineering projects. As a descriptive, project management, developed from several fields of application including civil construction, engineering and defense activity. During this era, Henry Gantt (the father of planning and control techniques and Henri Fayol); creation of five management functions that form the foundation of the body of knowledge associated with project and programme management (Witzel, 2003). Both Gantt and Fayol were students of F. W. Taylor's Theories of Scientific Management. Gantt is famous for his introduction of the Gantt Chart: a charting techniques for planning and controlling major projects and materials deliveries that flow from them. The chart portrays the plan, schedule and progress together in one easy to use chart. It shows the status of project elements, or activities and identifies which are behind or ahead of schedule.
Other project management techniques include: the critical path scheduling, programme evaluation and review technique and the closed loop MRP systems, (Duggah, 2005, Dobler & Burt, 2000). The later part of the 1950s marked the beginning of the modern project management era where core engineering fields come
together to work as one. Project management became recognized as a distinct discipline arising from the
management discipline with engineering model. Today, many project management associations are found
in Europe and USA. The International Project Management Association (IMPMA) was formed in Europe in
1967, while the Project Management Institute (PMI) was formed in the USA in 1969.

Approaches to Project Management (PM)
There are a number of approaches to managing project activities in the manufacturing activities. Some of
these approaches are:

- **The traditional approach**: Identifies a sequence of steps to be completed. Typical development
 components of this approach include: initiation, planning and design, execution and construction,
 monitoring and controlling systems, and completion (closing).

- **Prince2**: This is a structured approach to project management. It combines the original methodology
 with the managing the implementation of the total project (MITP). It provides a method for managing
 projects within a clearly defined framework. It further describes in a project and so on.

- **Prism**: Prism is a structured project management method developed to align organizational
 sustainability initiatives with project delivery. Prism by design is a repeatable practical and proactive
 methodology that ensures project success while increasing an organization’s negative environmental
 impact. It encompasses the management, control and organization of a project with consideration
 and emphasis beyond the project life-cycle. Furthermore, Prism is used for training and accreditation.

- **Critical chain project management**: Critical chain project management (CCPM) is a method of
 planning and managing projects execution designed to deal with uncertainties inherent in managing
 projects, while taking into consideration limited availability of resources: physical, human skills,
 management and support capacity. It is also applicable in the theory of constraints to projects. The
 goal of CCPM is to increase the flow of projects in an organization. To exploit the constraint tasks on
 the critical chain are given priority over all other activities. Projects are then planned and managed to
 ensure that the resources are ready when the critical chain tasks must start subordinating all other
 resources to the critical chain. The project plan should undergo resource leveling, and the longest
 sequence of resource constrained tasks should be identified as the critical chain.

- **Event chain methodology**: This method is an uncertainty modelling and schedule network analysis
 technique that is focused on identifying and managing events and event chains that affect project
 schedules. Event chain methodology helps to mitigate impact of psychological heuristics and biases,
 as well as to allow for easy modeling of uncertainties in the project schedules. Event chain approach
 is based on the principles of probabilistic moment of risk, event chains, critical events (event chains)
 project tracking with events and event-chain visualization (using Gantt chart or diagrams).

- **Agile project management approach**: These approaches based on the principles of human interaction
 management are founded on a process view of human collaboration. It is mostly typically used in
 software, website, technology and creative and marketing industries. The project is seen as a series of
 relatively small tasks conceived and executed as the situation demands in an adaptive manner, rather
 than as a completely pre-planned process.

- **Lean project management approach**: This approach combines principles from lean manufacturing
 with agile project management, to focus on delivery more value with less waste.

Project management stages
Traditionally, the Project Management Institute, 2010, has it that PM includes a number of basic processes.
The major process groups are:

- **Initiation**: This process determines the nature and scope of the project. According to Nathan & Jones
 (2003), if this process is not performed well, it is unlikely that the project will be successful in meeting the
 business’ needs. This stage encompasses the following areas:
 - Analyzing the business needs/requirements
 - Reviewing of the current operations
 - Financial analysis of costs and benefits
 - Stakeholder analysis (users, support staff etc)
 - Project charter (costs, tasks, deliverables and schedule)
 - Selecting the project manager.

Planning and design: The aim here is to plan time, cost and resources adequately to estimate the work.
project's chances of successfully accomplishing its goals. Project planning generally consists of the following as stated by Kerzner (2003):
- Determining how to plan
- Developing the scope statement
- Selecting the planning team
- Identifying deliverables
- Creating the work breakdown structure
- Identifying activities needed to complete those deliverables.
- Networking activities in their logical sequence
- Estimating time and cost for activities
- Developing the schedule
- Developing the budget
- Risk planning
- Gaining formal approval to start work, etc.

Execution: This consists of the processes used to complete the work defined in the project to accomplish the project's requirements. Execution process involves coordinating people and resources, integrating and performing the activities of the project in accordance with the project management plan.

Mentoring and controlling: This process consists of those processes performed to observe project execution so that potential problems can be identified in a timely manner and corrective action can be taken, when necessary, to control the execution of the project. The process is beneficial because project performance is observed and measured regularly to identify variance from the PM plan. Activities in this process include:
- Measuring the ongoing project activities
- Monitoring the project variables against PM plan and baseline of the project
- Identifying corrective actions to address issues and risks properly
- Influencing the factors that could circumvent integrated change control so that only approved changes are implemented.

Closing: Closing includes the formal acceptance of the project and the ending thereof. This stage consists of project close (finalizing all activities across groups to formally close the project or a project phase) and contract close (complete and settle each contract and close each contract applicable to the project or project stage.

Critical factors for project and organizational success:
Increasingly these days organizations are project based, meaning that the work they do is split into programmes of projects designed to deliver the organization's strategies and add value. Good management of these projects is essential if the organization is ready to succeed (Davis, 2002). Equally important to individual project success is ensuring that the right projects are carried out. In explaining project success, Judev and Muller (2005) put it succinctly thus: "Directing the individual project correctly will ensure it is done right". The further explained that in order to define what success means in a project context, is like gaining consensus from a group of people on the definition of a "Good act".

Organizations have varying levels of expertise in the project management function. Many of these organizations realize that to be successful, a better approach to project management is necessary. Project management maturity matrix can help organizations improve their chances of achieving success in their project implementation in terms of an evolutionary part from ad-hoc disorganize processes to mature discipline project management processes. The matrixes according to Judev and Muller (2005) describe four levels of maturity in project management thus:

Level 1: Projects are often delivered through the personal heroes and effort of the project manager and his/her team. They tend to be delivered in spite of the organization rather than because of it.

Level 2: Any body can deliver here not just heroes, because there is an agreed methodology to be followed that helps repeat earlier successes from similar projects. Course and training can help at this level.

Level 3: This is not only about delivering projects but also realizing benefits. This involves knowing what benefits are expected and when the project has delivered them.

Level 4: It is concerned with whether we are doing the right projects and how via those projects you can deliver the business strategy and add value.
Developing or identification of success factors have dominated the field of project management from 1980s to 2000. Many researchers have tried to a certain extent to identify success factor for product management. Among the researchers are Kerzner (1987), Pinto (1987), Pinto and Slevin (1989), Clarke (1999), Davis (2002), and Muller and Turner (2003). However, Pinto's research in 1987 and his subsequent findings with Slevin in 1989 of 10 critical success factors have since become a classic piece of works in this field. Their model is one of the most widely quoted lists of critical success factors (Muller and Turner, 2003).

The critical success factors for project management as established by the various researchers (Clarke 1999, Davis 2002) Pinto and Slevin 1989, and Muller & Turner 2003) include the following:

- **Project mission/common goal/direction:** Initial clarity of goals and direction.
- **Top management support:** This refers to the willingness of top management to provide the necessary resources and authority of power for project success.
- **Project schedule/plans:** Detailed specification of the individual action/steps required for project management.
- **Client consultation:** This referred to the communication and consultation with and active listening to all affected parties.
- **Personnel/Team work:** The recruitment, selection and training of the requisite personnel that will constitute the project team.
- **Technical tasks ability:** the availability of the required technology and expertise to accomplish the specific technical action steps.
- **Client acceptance:** This is the act of “selling” the final product to its intended users.
- **Communicating and feedback:** This entails the timely provisions of comprehensive control information at each stage in the implementation process.
- **Communication:** This refers to the provision of an appropriate network and necessary data to all key actors in the project management.
- **Trouble shooting/risk management:** The ability to handle unexpected crises and deviations from plan.
- **Corporate understanding:** A good corporate understanding between the employee/functional level, project management level, and exclusive level will create a corporate culture where project management is no longer viewed as either a threat established authority or a cause for unwanted change.
- **Executive commitment:** Project management is unlikely to succeed unless there is a visible support and commitment by the executive to the organization. This support and commitment can be described in two sub-topics viz; project sponsorship and lifecycle management.
- **Organizational adaptability:** This refers to the organizations ability to respond quickly and effectively to changes in the market pace. Two critical factors involving organizational adaptability include informal project management and a simple but lean structure.
- **Project manager selection criteria:** Four criteria that are normally used to select project managers are whether they are result-oriented; possess strong interpersonal skills, depth of understanding of the organization and their commitment to corporate values.
- **Leadership style:** Strong leadership style by the project manager is necessary for the successful implementation of projects. Therefore, it is imperative for a project manager to maintain leadership style that adapts to each employee assigned to the project.
- **Commitment to planning and control:** When detailed planning is being done, it must be tracked or followed up and re-planning must be done if the initial plan does not work before it is too late to do so.

The above is a pointer to the fact that the success of any project is dependent to a large extent on how the critical success factors are analyzed and managed.

METHODOLOGY AND APPROACH

This study employed both descriptive and a simple survey designs to gather relevant data for the study. Both primary and secondary sources of data were used in this study. The secondary data was sourced from the project execution records and performance records kept by DCP while the primary data was sourced via the use of Likert-scale questionnaire administered on the respondents. The population of this study consists of all
management staff, 8 business level management staff and 12 tactical level management staff. The hole of the population was used as the sample size because of the small number of the respondents. The data for this study was presented and analyzed using both tables and charts for clarity of explanation.

The chi-square test statistic was used to test hypothesis one while the Pearson Movement Correlation was used to test hypotheses two and three.

Data presentation, analysis and interpretation of results
Table 1: Respondents view on project-vision and success

<table>
<thead>
<tr>
<th>Statement</th>
<th>SA</th>
<th>A</th>
<th>SD</th>
<th>D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A clear project vision/provide the guide/direction for both the management and project consultant/contractor thereby enhancing proper planning that leads to successful implementation and execution of the project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top level managers</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Business level managers</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Tactical level managers</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>68</td>
<td>16</td>
<td>4</td>
<td>12</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Field survey June, 2012

From the above table, 17 staff representing 68% of the respondents strongly agree that a clear project vision provide guide/direction to both management and project consultants that enhances proper planning and execution of project in DCP while 4 staff representing 16% of the respondents agree to the assertion. Only 1 and 3 staff representing 4 and 12% respectively strongly disagree and disagrees to the effect of a clear project vision on project success in DCP as contained in the table above.

Table 2: Relationship between top management support, project planning/scheduling and project success

<table>
<thead>
<tr>
<th>Stages of project</th>
<th>Top management support (extra hours of supervision in a week)</th>
<th>Project success (earliest completion time or float/idle days)</th>
<th>Project planning/scheduling (percentage accuracy in charting and timing activities) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>+18</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>+13</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>+10</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>+12</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>+7</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>+16</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>+14</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>+17</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>+18</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>+21</td>
<td>97</td>
</tr>
</tbody>
</table>

Source: Extract from project execution and performance records in DCP 2012

The data from this table was used to address objective two. From the table above, it can be observed that there is a positive relationship between top management support (measured in terms of extra hours of supervision by top management) and project success (measured also in terms of its earliest completion time or float representing idle days before the actual completion time). At the 10th stage of the project when top management put in 20 extra hours of supervision, the activities that stage were completed 21 days earlier than the actual completion time. Also, when top management put in 16 and 15 extra hours of supervision at stages 16 and 15, the activities at those stages were completed 18 and 17 days respectively earlier than the actual completion time. Again, when top management put in the least extra hour of supervision at stage 5 of the project, the activities at that stage were completed only 7 days earlier than the actual completion time. This shows that top management support has a direct relationship with project success in DCP. This is demonstrated using scattered chart below:
In respect of the extent of the relationship between project planning/scheduling and project success, it can also be observed from Table 4.1.2 above that project planning/scheduling positively influence project success in DCP phase 1 expansion project. When the percentage project planning/scheduling precision level of stage 10 was 97%, the activities at that stage of the project were completed 20 days earlier than the actual completion time. Also, when the percentage project planning/scheduling precision level at stages 9 and 8 were 95% and 90% respectively, the activities at those stages of the project were completed 16 and 17 days earlier than the actual completion time. But when the percentage project planning/scheduling precision level was lowest at 30% in stage 5 of the project, the activities at stage 5 were completed only 7 days earlier than the actual completion time. This relationship is represented diagrammatically using scattered chart below:
Figure 2: Relationship between project planning/scheduling and project success in DCP
Source: SPSS Output June, 2012

The chart above shows that the higher the percentage project planning/scheduling precision level, the earlier the project completion time (project success). This means that there is a direct strong positive relationship between project planning/scheduling and project success in DCP.

Test of Hypotheses

H0: Clear project mission does not significantly affect on project success in DCP

\[
X^2_C = 3.11 \\
X^2_1 = 2.78
\]

Table 3: Data presentation for H01

<table>
<thead>
<tr>
<th>Po</th>
<th>Fe</th>
<th>Po - Fe</th>
<th>(Po - Fe)^2</th>
<th>(Po - Fe)²/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.4</td>
<td>1.6</td>
<td>2.56</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>5.4</td>
<td>-1.4</td>
<td>1.96</td>
<td>0.36</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0.49</td>
<td>0.38</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.40</td>
<td>0.38</td>
</tr>
<tr>
<td>8</td>
<td>8.2</td>
<td>-0.2</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>1.9</td>
<td>0.1</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>-0.4</td>
<td>0.16</td>
<td>0.11</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>[\sum X^2_C = 3.11]</td>
</tr>
</tbody>
</table>

Decision Rule

If the calculated value of the chi-square distribution exceeds the critical value, we shall reject the Null hypothesis and accept the alternative hypothesis.

Since the value of \[X^2_C > X^2_n\] (see Appendix 2) we reject the null hypothesis and conclude that clear project mission have effect on project success in DCP.

H02: Top management support does not have a significant effect on project success in DCP

Table 4: Correlations

<table>
<thead>
<tr>
<th>Pearson correlation</th>
<th>Project success (float)</th>
<th>Management Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mgt support</td>
<td></td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>Project success (float)</td>
<td>.968</td>
</tr>
<tr>
<td></td>
<td>Mgt support</td>
<td>.968</td>
</tr>
<tr>
<td>N</td>
<td>Project success (float)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Mgt support</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 5: Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the estimate</th>
<th>Durbin-Waston</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.968*</td>
<td>.937</td>
<td>.922</td>
<td>1.128</td>
<td>.966</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Mgt Support
b. Dependent Variable: Project Success (Float)

FINDINGS

The Pearson movement correlation result above shows that top management support and project success are positively correlated. This means that the degree to which top management support and project rise and fall
Project Management (PM) and Organizational Success in Nigeria: A Study of Dangote Cement Plc (DCP), Tse-Kucha, Gboko, Benue State

together is .968 or 97% and the relationship between these variables is significance at 0.00 as shown in the correlation table above. Our model summary table further confirmed that since the difference in the value of our R² (94%) and our adjusted R² (93%) is small; the strength of our model to predict and generalize is very high at 94%. In overall, since the level of significance (0.00) of the relationship between project top management and project success is more our ρ < 0.05), we reject the null hypothesis and conclude that top management support have a significant relationship with project success; in the case under investigation, its 97%.

H03: Project schedule/plan have no significant effect on project success in DCP

<table>
<thead>
<tr>
<th>Table 6: Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
</tr>
<tr>
<td>Project success (float)</td>
</tr>
<tr>
<td>Project scheduling</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
</tr>
<tr>
<td>Project success (float)</td>
</tr>
<tr>
<td>Project scheduling</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Project success (float)</td>
</tr>
<tr>
<td>Project scheduling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 7: Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Mgt Support
b. Dependent Variable: Project Success (Float)

FINDINGS
The Pearson movement correlation results above shows hat project planning/scheduling and project success are positively correlated. This means that the degree to which project planning/scheduling and project success rise and fall together is .957 or 96% and the relationship between these variables is significance at 0.00 as shown in the correlation table above. Our model summary table further confirmed that since the difference in the value of our R² (92%) and our adjusted R² (91%) is small; the strength of our model to predict and generalize is very high at 92%. In overall, since the level of significance (0.00) of the relationship between project planning/scheduling and project is more our ρ < 0.05), we reject the null hypothesis and conclude that the extent of the relationship project planning/scheduling and project success can be ascertained. In the case under investigation, it is 96%.

CONCLUSION
Based on the finding of this study, it is obvious that clear project mission, top management support and project planning/scheduling are all critical factors for project success in a manufacturing concern like DCP. Stakeholders like the management, project consultants and contractors must pay serious attention to these factors if they want to achieve success in their project execution at all levels.

RECOMMENDATIONS
a. Since a clear project mission was seen to have a significant effect on project success, the management of DCP is encouraged to always consult relevant stakeholders who have the skills and technical know-how on any aspect a project that the company wishes to undertake, be they within the company or outside the company. This will also help the company minimize chances of mistakes that most times lead to extra cost or time and/or project failure.

b. Management of DCP should formulate policies making it mandatory for managers at all levels who are involved at any stage of the project, to work minimum of at least 10 extra hours a week in
projects which are undertaken by the company are carried out over a long time as experienced in the project under investigation.

c. Management of DCP should ensure that all stages of their projects are properly planned taking into consideration some of the inherent incidental factors that may derail the initial plan in the course of the project execution. This will help in ensuring that could be caused by unanticipated or circumstantial factors are minimized thereby enhancing earlier completion of all their projects.

REFERENCES
Bemue Cement Project Extension and Performance Report, 2010

Project Management Institute, Inc.
